

Chapman, Paul, et al. "Venus, virtual exploration of underwater sites." Proceeding of joint event CIPA/VAST/EG/Euro-Med (2006).

lio, T., Shiomi, M., Shinozawa, K., Shimohara, K., Mik M., & Hagita, N. (2015). Lexical entrainment in hum: robot interaction. International Journal of Social Robotics, 7(2), 253-263.

ArchAIDE' aim was to demostrate that it was possible to create an automatica system to recognise sherds by a single photo

Decoration-based identification

Shape based recognition

02/11/2020

_

Machine Learning

- Universal
- Robust
- Data-driven Random Forest

26

Artificial Neural Networks (ANNs)

- Multilayer Perceptron Network (MLP)
 Probabilistic Neural Network (PNN)
- Convolutional Neural Network (CNN)
- Self-Organizing Feature Map (SOM)

Datafication

Can archaeology theoretically fit a Big Data approach?

Many scholars suggest that archaeology is perfect for Big Data because archaeological data are messy and difficult to structure by definition.

Conclusion

One of the most complex aspects of applying AI is data availability. AI algorithms need data, possibly Big Data, hopefully, Big Open Quality Data.

34

